Championnat du Mexique de football 1966-1967

Navigation

La Primera División 1966-1967 est la vingt-quatrième édition de la première division mexicaine soccer gloves goalie.

Lors de ce tournoi, le Club América a tenté de conserver son titre de champion du Mexique face aux quinze meilleurs clubs mexicains.

Chacun des seize clubs participant au championnat était confronté deux fois aux quinze autres cheap football jerseys for men.

Seulement une place était qualificative pour la Coupe des champions de la CONCACAF.

Les seize équipes s’affrontent à deux reprises selon un calendrier tiré aléatoirement. Le classement est basé sur l’ancien barème de points (victoire à 2 points, match nul à 1, défaite à 0). Le départage final se fait selon les critères suivants si le titre ou la relégation sont en jeu :

Sinon le départage final se fait selon les critères suivants :

Frasso Sabino

Frasso Sabino ist eine Gemeinde mit 743 Einwohnern (Stand 31. Dezember 2015) in der Provinz Rieti in der italienischen Region Latium.

Frasso Sabino liegt 56 km nordöstlich von Rom und 28 km südlich von Rieti. Es liegt in den Sabiner Bergen oberhalb des Tals des Farfa. Das Gemeindegebiet erstreckt sich über eine Höhe von 233 bis 470 m s.l stainless steel drink containers.m.

Die Gemeinde liegt in der Erdbebenzone 2 (mittel gefährdet).

Zur Gemeinde gehören die Ortsteile Casali di Frasso, Immaginetta und der nördliche Teil von Osteria Nuova. Der südliche Teil gehört zu Poggio Moiano.

Die Nachbargemeinden sind Casaprota, Monteleone Sabino, Poggio Moiano, Poggio Nativo und Poggio San Lorenzo.

Der Ortsteil Osteria Nuovo liegt an der strada statale 4 Via Salaria (SS 4), die von Rom über Rieti an die Adriaküste führt.

Quelle: ISTAT

Antonio Statuti (Bürgerliste) wurde im Juni 2009 zum Bürgermeister gewählt.

In Frasso steht das Observatorium Astronomico Comunale Virginio Cesarini. Dort wurde der Asteroid (34138) Frasso Sabino entdeckt.

Accumoli | Amatrice | Antrodoco | Ascrea | Belmonte in Sabina | Borbona | Borgo Velino | Borgorose | Cantalice | Cantalupo in Sabina | Casaprota | Casperia | Castel Sant’Angelo | Castel di Tora&nbsp glass bottle art;| Castelnuovo di Farfa | Cittaducale | Cittareale | Collalto Sabino | Colle di Tora&nbsp youth team uniforms;| Collegiove | Collevecchio | Colli sul Velino | Concerviano | Configni | Contigliano | Cottanello | Fara in Sabina | Fiamignano | Forano | Frasso Sabino | Greccio | Labro | Leonessa | Longone Sabino | Magliano Sabina | Marcetelli | Micigliano | Mompeo | Montasola | Monte San Giovanni in Sabina | Montebuono | Monteleone Sabino | Montenero Sabino | Montopoli di Sabina | Morro Reatino | Nespolo | Orvinio | Paganico Sabino | Pescorocchiano | Petrella Salto | Poggio Bustone | Poggio Catino | Poggio Mirteto&nbsp how to tenderize a steak quickly;| Poggio Moiano | Poggio Nativo | Poggio San Lorenzo | Posta | Pozzaglia Sabina | Rieti | Rivodutri | Rocca Sinibalda | Roccantica | Salisano | Scandriglia | Selci | Stimigliano | Tarano | Toffia | Torri in Sabina | Torricella in Sabina | Turania | Vacone | Varco Sabino

Tanorexie

Tanorexie (dt.: Bräunungssucht) wird von einigen deutschsprachigen Fachleuten das übertriebene Verlangen, die Haut exzessiv zu bräunen, genannt. Der Begriff setzt sich aus dem englischen Begriff to tan (bräunen) und Anorexie (Magersucht) zusammen, womit die Parallelen zum gestörten und verzerrten Selbstbild von Magersüchtigen betont werden sollen.

Es gibt bislang nur wenige wissenschaftliche Untersuchungen zum übertriebenen Solariengebrauch. In den englischsprachigen Fachpublikationen wird es als indoor tanning dependency oder –addiction bezeichnet. Demnach könnte es eine dementsprechende, nicht stoffgebundene Sucht geben. Eine allgemeine Anerkennung als Krankheitsentität steht jedoch noch aus.

Die Betroffenen sollen die „perfekte Bräune“ anstreben und ihr Schönheitsideal über stark gebräunte Haut definieren. Ihr Wunsch nach Körperbräune übersteige dabei ein normales und gesundes Maß. Sie haben Angst davor, zu blass und damit unattraktiv zu werden, und bräunen sich daher möglichst oft und intensiv, sowohl in der Sonne als auch mit Hilfe von häufigen Besuchen in Sonnenstudios, wobei diese Angst selbst bei objektiv sehr starker Bräunung bestehen bleibe und dazu führe, dass die Haut immer weiter gebräunt werden muss.

Mögliche Folgerisiken sind vorzeitige Hautalterung best pill remover, Hautveränderungen wie beispielsweise Pigmentstörungen (Hautflecke), Hautkrebs und Zahnausfall aufgrund der übermäßigen Erwärmung.

Angesichts noch fehlender Großstudien zur Tanorexie haben die Deutsche Krebshilfe und die Arbeitsgemeinschaft Dermatologische Prävention (ADP) 2013 eine permanente Aufklärungsaktion über „Hautkrebs durch UV-Strahlen“ gestartet. Die Bürger werden durch Präventionsschriften und kostenloses Informationsmaterial vor den Krebsfolgen gewarnt, die extremes, zwanghaftes Bräunen der Haut verursacht.

Der Vorsitzende der Arbeitsgemeinschaft Dermatologische Prävention (ADP), Professor Dr. Eckhard Breitbart, nannte den Zusammenhang von Ultraviolettstrahlung und Erkrankungen an Schwarzem Hautkrebs Malignes Melanom, als erwiesen. Das Risiko verdopple sich healthy water bottle, wenn Solarien bis zu einem Alter von 35 Jahren regelmäßig einmal im Monat genutzt werden. „Bräunungssüchtige jedoch gehen wöchentlich, im Extremfall auch täglich ins Solarium.“

Hawaii (novel)

Hawaii is a novel by James Michener. The novel was published in 1959, the same year Hawaii became the 50th U.S. state. The book has been translated into 32 languages.

The historical correctness of the novel is high, although the narrative about the early Polynesian inhabitants is based more on folklore than anthropological and archaeological sources. Written in episodic format like many of Michener’s works, the book narrates the story of the original Hawaiians who sailed to the islands from Bora Bora, the early American missionaries (in this case, Calvinist missionaries) and merchants, and the Chinese and Japanese immigrants who traveled to work and seek their fortunes in Hawaii. The story begins with the formation of the islands themselves millions of years ago and ends in the mid-1950s. Each section explores the experiences of different groups of arrivals.

The novel tells the history of Hawaiian Islands from the creation of the isles to the time they became an American state, through the viewpoints of selected characters who represent their ethnic and cultural groups in the story (e.g yellow football socks., the Kee family represents the viewpoint of Chinese-Hawaiians). Most of the chapters cover the arrivals of different peoples to the islands.

Chapter 1: From the Boundless Deep describes the creation of the Hawaiian land from volcanic activity. Goes into flavorful detail describing such things as primary succession taking root on the island, to life finally blooming.

Chapter 2: From the Sunswept Lagoon follows the creation of the isles which is mentioned in the preceding chapter. The chapter begins on the island of Bora Bora, where many people, including the King Tamatoa and his brother Teroro latest goalkeeper gloves, are upset with the neighboring isles of Havaiki, Tahiti, etc. because they are trying to force the Bora Borans to give up their old gods, Tāne and Ta’aroa, and start worshiping ‘Oro, the fire god, who constantly demands human sacrifices. Tamatoa suggests to his brother and friends that they should migrate to some other place where they might find religious freedom. After finally agreeing to this plan, his brother secretly puts fire to Havaiki to take revenge for the human sacrifices they have been demanding from Bora Borans. Later they take the canoe Wait for the West Wind and sail to Hawaii. Later some voyage back to Bora Bora to bring back with them some women and children and an idol of the volcano goddess, Pele.

Chapter 3: From the Farm of Bitterness follows the journey of the first Christian missionaries to Hawaii in the 1800s and their influence over Hawaiian culture and customs. Many of the missionaries become founding families in the islands, including the Hales and Whipples. Michener’s character Reverend Abner Hale is a caricature of true-life missionary Hiram Bingham I.

Chapter 4: From the Starving Village covers the immigration of Chinese to work on the pineapple and sugarcane plantations. The patriarch of the Kee family contracts leprosy (a.k.a. the “Chinese sickness”) and is sent to the leper colony in Molokai.

Chapter 5: From The Inland Sea focuses on Japanese workers brought to the islands to replace Chinese laborers who begin to start their own businesses.[who?] Also covers the bombing of Pearl Harbor.

Chapter 6: The Golden Men summarizes the changes in Hawaiian culture and economics based on the intermarriages of various groups in the islands.

In 1966, parts of the book were made into the film Hawaii (1966), starring Max von Sydow and Julie Andrews. The film focused on the book’s third chapter, “From the Farm of Bitterness”, which covered the settlement of the island kingdom by its first American missionaries.

A sequel waterproof camera bag cover, The Hawaiians (1970), starring Charlton Heston, covered subsequent chapters of the book, including the arrival of the Chinese and Japanese and the growth of the plantations.

Symplectic group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n), the latter is called the compact symplectic group. Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the matrices used to represent the groups. In Cartan’s classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

The name “symplectic group” is due to Hermann Weyl (details) as a replacement for the previous confusing names of (line) complex group and Abelian linear group, and is the Greek analog of “complex”.

The symplectic group of degree 2n over a field F, denoted Sp(2n, F), is the group of 2n × 2n symplectic matrices with entries in F, and with the group operation that of matrix multiplication. Since all symplectic matrices have determinant 1, the symplectic group is a subgroup of the special linear group SL(2n, F) buy metal water bottle.

More abstractly, the symplectic group can be defined as the set of linear transformations of a 2n-dimensional vector space over F that preserve a non-degenerate, skew-symmetric, bilinear form, see classical group for this definition. Such a vector space is called a symplectic vector space. The symplectic group of an abstract symplectic vector space V is also denoted Sp(V).

Typically, the field F is the field of real numbers, R, or complex numbers, C. In this case Sp(2n, F) is a real/complex Lie group of real/complex dimension n(2n + 1). These groups are connected but non-compact.

The center of Sp(2n, F) consists of the matrices I2n and I2n as long as the characteristic of the field is not 2. Here I2n denotes the 2n × 2n identity matrix. The non-triviality of the center of Sp(2n, F) and its relation to the simplicity of the group is discussed here.

The real rank of the Lie Algebra, and hence, the Lie Group for Sp(2n, F) is n.

The condition that a symplectic matrix preserves the symplectic form can be written as

where AT is the transpose of A and

The Lie algebra of Sp(2n, F) is given by the set of 2n × 2n matrices A (with entries in F) that satisfy

When n = 1, the symplectic condition on a matrix is satisfied if and only if the determinant is one, so that Sp(2, F) = SL(2 australian goalkeeper gloves, F). For n > 1, there are additional conditions, i.e. Sp(2n, F) is then a proper subgroup of SL(2n, F).

The symplectic group over the field of complex numbers is a non-compact, simply connected, simple Lie group.

Sp(2n, C) is the complexification of the real group Sp(2n, R) buy reusable water bottle. Sp(2n, R) is a real, non-compact, connected, simple Lie group. It has a fundamental group isomorphic to the group of integers under addition. As the real form of a simple Lie group its Lie algebra is a splittable Lie algebra.

Some further properties of Sp(2n, R):

The members of the symplectic Lie algebra sp(2n, F) are the Hamiltonian matrices.

These are matrices,





Q




{\displaystyle Q}


such that

where B and C are symmetric matrices. See classical group for a derivation.

For Sp(2,R), the group of 2 × 2 matrices with determinant 1, the three symplectic (0, 1)-matrices are:

Symplectic geometry is the study of symplectic manifolds. The tangent space at any point on a symplectic manifold is a symplectic vector space. As noted earlier, structure preserving transformations of a symplectic vector space form a group and this group is Sp(2n, F), depending on the dimension of the space and the field over which it is defined.

A symplectic vector space is itself a symplectic manifold. A transformation under an action of the symplectic group is thus, in a sense, a linearised version of a symplectomorphism which is a more general structure preserving transformation on a symplectic manifold.

The compact symplectic group Sp(n) is often written as USp(2n), indicating the fact that it is isomorphic to the group of unitary symplectic matrices, Sp(n) ≅ U(2n) ∩ Sp(2n, C). Although the Sp(n) notation is more common, and hence used here, it can be confusing in that the general idea of the symplectic group – including the compact, real and complex forms – can be represented as Sp(n). For example, this is used in the sidebar at the top of this page in the list of classical groups.

Sp(n) is the subgroup of GL(n, H) (invertible quaternionic matrices) that preserves the standard hermitian form on Hn:

That is, Sp(n) is just the quaternionic unitary group, U(n, H). Indeed, it is sometimes called the hyperunitary group. Also Sp(1) is the group of quaternions of norm 1, equivalent to SU(2) and topologically a 3-sphere S3.

Note that Sp(n) is not a symplectic group in the sense of the previous section—it does not preserve a non-degenerate skew-symmetric (H-bilinear) form on Hn (in fact, the only skew-symmetric form is the zero form). Rather, it is isomorphic to a subgroup of Sp(2n, C), and so does preserve a complex symplectic form in a vector space of dimension twice as high. As explained below, the Lie algebra of Sp(n) is a real form of the complex symplectic Lie algebra sp(2n, C) underwater case.

Sp(n) is a real Lie group with (real) dimension n(2n + 1). It is compact, connected, and simply connected.

The Lie algebra of Sp(n) is given by the quaternionic skew-Hermitian matrices, the set of n-by-n quaternionic matrices that satisfy

where A is the conjugate transpose of A (here one takes the quaternionic conjugate). The Lie bracket is given by the commutator.

The compact symplectic group Sp(n) comes up in quantum physics as a symmetry on Poisson brackets so it is important to understand its subgroups. Some main subgroups are:

Conversely it is itself a subgroup of some other groups:

There are also the isomorphisms of the Lie algebras sp(2) = so(5) and sp(1) = so(3) = su(2).

Every complex, semisimple Lie algebra has a split real form and a compact real form; the former is called a complexification of the latter two.

The Lie algebra of Sp(2n, C) is semisimple and is denoted sp(2n, C). Its split real form is sp(2n, R) and its compact real form is sp(n). These correspond to the Lie groups Sp(2n, R) and Sp(n) respectively.

The algebras, sp(p, np), which are the Lie algebras of Sp(p, np), are the indefinite signature equivalent to the compact form.

Consider a system of n particles, evolving under Hamilton’s equations whose position in phase space at a given time is denoted by the vector of canonical coordinates,

The elements of the group Sp(2n, R) are, in a certain sense, canonical transformations on this vector, i.e. they preserve the form of Hamilton’s equations. If

are new canonical coordinates, then, with a dot denoting time derivative,

where

for all t and all z in phase space.

Consider a system of n particles whose quantum state encodes its position and momentum. These coordinates are continuous variables and hence the Hilbert space, in which the state lives, is infinite-dimensional. This often makes the analysis of this situation tricky. An alternative approach is to consider the evolution of the position and momentum operators under the Heisenberg equation in phase space.

Construct a vector of canonical coordinates,

The canonical commutation relation can be expressed simply as

where

and In is the n × n identity matrix.

Many physical situations only require quadratic Hamiltonians, i.e. Hamiltonians of the form

where K is a 2n × 2n real, symmetric matrix. This turns out to be a useful restriction and allows us to rewrite the Heisenberg equation as

The solution to this equation must preserve the canonical commutation relation. It can be shown that the time evolution of this system is equivalent to an action of the real symplectic group, Sp(2n, R), on the phase space.

Freeganismo

Il freeganismo è uno stile di vita anticonsumista nel quale le persone utilizzano strategie di vita alternative basate sulla partecipazione limitata all’economia convenzionale e sul minimo consumo di risorse.

I freegani abbracciano la comunità dry pak waterproof cell phone case, la generosità, il problema sociale, la libertà, la cooperazione, e la condivisione rispetto a una società basata sul materialismo, l’apatia morale toothpaste dispenser for kids, la competizione belt bag for running, la conformità e l’avidità.

Questo stile di vita consiste nel recuperare gli scarti, soprattutto nel prendere il cibo in scadenza dai supermercati, i quali lo butterebbero senza averlo venduto.

In Italia, l’esperienza freegan è stata affiancata da forme istituzionalizzate per il recupero delle eccedenze di produzione come la Fondazione Banco Alimentare e il Last Minute Market nato dal progetto di Andrea Segrè della facoltà di Agraria dell’Università di Bologna.

Tutte queste esperienze positive sono state rafforzate dalla Legge , in materia di “Disciplina della distribuzione dei prodotti alimentari a fini di solidarietà sociale. per la ridistribuzione degli avanzi alimentari delle mense scolastiche e aziendali e dei supermercati, ossia di tutti quei prodotti vicini alla scadenza ma ancora commestibili. Le associazioni di ridistribuzione vengono equiparate a consumatori finali.

Altri progetti

Anthemiolus

Anthemiolus (died c. 471 AD) was the son of the Western Roman Emperor Anthemius (467–472) and Marcia Euphemia, daughter of the Eastern Roman emperor Marcian.

His name means “little Anthemius” and is a diminutive of his and his father’s name Anthemius, in order to distinguish them both.

His life is known only from the Chronica Gallica of 511. He was sent by his father to Gaul with a powerful army, accompanied by three generals — Thorisarius, Everdingus, and Hermianus — in order to oppose the Visigoths then occupying Provence and threatening to conquer the Auvergne. He and his generals were defeated by the Visigothic king Euric near Arles and all four of them lost their lives. The Chronica, in entry 649, states:

Antimolus a patre Anthemio imperatore cum Thorisario paul frank backpacks, Everdingo et Hermiano com. stabuli Arelate directus est, quibus rex Euricus trans Rhodanum occurrit occisisque ducibus omnia vastavit

Antimolus was sent by his father, Emperor Anthemius, to Arles, with Thorisarius, Everdingus and Hermanius, comes [or comites] stabuli: King Euric met them on the far side of the Rhone and disposable water bottles, having killed the duces, laid everything waste lint remover.

According to the Chronica, this event falls between the succession of Euric (467) and the war between Anthemius and Ricimer (471–472). It can probably be further narrowed to the period when Anthemius is known to have been organising a concerted effort to remove the Visigoths from Gaul between 468 and 471, a period during which an army led by the Briton Riothamus was defeated near Déols. It is not impossible that Anthemiolus’ army was sent to reinforce Riothamus and that Euric defeated both forces in turn, probably in either 470 or 471.

Mumford (film)

Mumford is a 1999 American comedy-drama film written and directed by Lawrence Kasdan. It is set in a small town where a new psychologist (Loren Dean) gives offbeat advice to the neurotic residents. Both the psychologist and the town are named Mumford meat tenderising machine, a coincidence that eventually figures in the plot. The film co-stars Hope Davis, Jason Lee, Alfre Woodard, Mary McDonnell, Martin Short, David Paymer, Pruitt Taylor Vince, Ted Danson, and Zooey Deschanel in her film debut.

As a relative newcomer to an Oregon town that bears his name, Dr goalkeeper clothing australia. Mumford (Loren Dean) seems charming and skillful to his neighbors and patients glass bottles for water. His unique, frank approach to psychotherapy soon attracts patients away from the two therapists (David Paymer and Jane Adams) already working in the area.

Soon he is treating a variety of conditions, ranging from the obsession of one man (Pruitt Taylor Vince) to erotic novels to an unhappily married woman (Mary McDonnell) and her compulsive shopping. Mumford befriends a billionaire computer mogul (Jason Lee) and a cafe waitress (Alfre Woodard) and attempts to play matchmaker. He also begins to fall for a patient (Hope Davis) who suffers from chronic fatigue syndrome.

Together with an attorney (Martin Short), a patient Mumford had rejected because of his narcissism, the rival therapists conspire to find skeletons in Mumford’s closet, hoping to destroy his reputation. Meanwhile, Mumford’s inherent likability causes his life to become intertwined with much of the rest of the town.

The film also features future Dancing with the Stars alumna and winner Kelly Monaco in a small (nonspeaking) role.

Mumford was met with mixed reviews. Many critics expressed a general approval, but questioned the unpleasant back story (which contrasted with the overall tone of the film). The film has a 56% rating on Rotten Tomatoes, with the consensus “Memorable moments are few and far between.”

The film, based on a $28 million budget, was a commercial failure, earning only $4,555,459 in the US.

Josef Floren

Josef Floren (* 29. März 1941; † 11. November 2012) war ein deutscher Klassischer Archäologe steak marinade and tenderizer.

Josef Floren studierte von 1961 bis 1972 Klassische Archäologie, Latein und Alte Geschichte an der Westfälischen Wilhelms-Universität in Münster und der Albert-Ludwigs-Universität Freiburg. Die Promotion bei Max Wegner in Klassischer Archäologie erfolgte 1972 mit einer Arbeit zum Thema Studien zur Typologie des Gorgoneion. 1972/73 war er als Inhaber des Reisestipendiums des Deutschen Archäologischen Instituts im Mittelmeerraum unterwegs. Seit der Rückkehr 1973 war er wissenschaftlicher Mitarbeiter am Institut für Klassische Archäologie und Frühchristliche Archäologie/Archäologisches Museum der Westfälischen Wilhelms-Universität Münster what tenderizes meat.

Floren forschte vorrangig zur antiken Skulptur. Gemeinsam mit Werner Fuchs bearbeitete er seit 1973 die Neubearbeitung des Teils Die griechische Plastik des auf drei Bände konzipierten Handbuchs der Archäologie – Die griechische Plastik und war dabei insbesondere für den 1987 erschienenen ersten Teilband zur geometrischen und archaischen Kunst verantwortlich. Teilband 2 zur klassischen Plastik war in Arbeit, der dritte zur hellenistischen Plastik in Vorbereitung charm bracelets.

Floren trat zudem als Kritiker undurchsichtiger Ausstellungspraktiken des Stendaler Winckelmann-Museums und dubioser Kunsthändler hervor.

Birkhoff (månekrater)

Birkhoff er et gigantisk nedslagskrater på Månen af typen “bjergomgiven slette”. Det ligger på den nordlige halvkugle på Månens bagside og er opkaldt efter den amerikanske matematiker George David Birkhoff (1884 – 1944).

Navnet blev officielt tildelt af den Internationale Astronomiske Union (IAU) i 1970. ,,

Krateret observeredes første gang i 1965 af den sovjetiske rumsonde Zond 3.,

Birkhoffs ydre væg grænser op til Carnotkrateret mod syd, Rowlandkrateret langs den vestlige rand og Stebbinskrateret mod nord. Tæt på i nordøstlig retning ligger Van’t Hoff -krateret.

Krateret er et meget gammelt og er stærkt eroderet, og dets overflade er omformet af mange nedslag både i det indre og langs dets rand.

Hvad der nu er tilbage af kraterets ydre omkreds er et forrevet skrånende højdedrag langs den indre kratervæg, og randen er blevet slidt ned thermos stainless steel, til den er i niveau med det irregulære terræn udenfor discount football tops. Kraterranden er arret af små kratere af varierende dimensioner.

Inde i krateret findes adskillige kratere, som er bemærkelsesværdige i sig selv. Langs den nordvestlige indre rand ligger det eroderede “Birkhoff X”, mens “Birkhoff Q” ligger længst mod syd i den sydvestlige kraterbund. Det sidste er med en lav højderyg forbundet med dobbeltkraterne “Birkhoff K” og “L” i kraterets østre halvdel. De mindre og yngre kratere “Birkhoff Y” og “Z” ligger i den nordlige del af kraterbunden. Resten af bunden er flad nogle steder, men også med ujævne områder og mange småkratere.

De kratere, som kaldes satellitter, er små kratere beliggende i eller nær hovedkrateret. Deres dannelse er sædvanligvis sket uafhængigt af dette, men de får samme navn som hovedkrateret med tilføjelse af et stort bogstav. På kort over Månen er det en konvention at identificere dem ved at placere dette bogstav på den side af satellitkraterets midte, som ligger nærmest hovedkrateret. dritz lint shaver,, Birkhoffkrateret har følgende satellitkratere:


·· )

(Bemærk, at kraternavne med specialkarakter, herunder mellemrum, kan kræve søgning på de nævnte internetsider)

·· )